Preemptive, Low Latency Datacenter Scheduling via Lightweight Virtualization
نویسندگان
چکیده
Data centers are evolving to host heterogeneous workloads on shared clusters to reduce the operational cost and achieve higher resource utilization. However, it is challenging to schedule heterogeneous workloads with diverse resource requirements and QoS constraints. On the one hand, latency-critical jobs need to be scheduled as soon as they are submitted to avoid any queuing delays. On the other hand, best-effort long jobs should be allowed to occupy the cluster when there are idle resources to improve cluster utilization. The challenge lies in how to minimize the queuing delays of short jobs while maximizing cluster utilization. Existing solutions either forcibly kill long jobs to guarantee low latency for short jobs or disable preemption to optimize utilization. Hybrid approaches with resource reservations have been proposed but need to be tuned for specific workloads. In this paper, we propose and develop BIG-C, a container-based resource management framework for Big Data cluster computing. The key design is to leverage lightweight virtualization, a.k.a, containers to make tasks preemptable in cluster scheduling. We devise two types of preemption strategies: immediate and graceful preemptions and show their effectiveness and tradeoffs with loosely-coupled MapReduce workloads as well as iterative, in-memory Spark workloads. Based on the mechanisms for task preemption, we further develop a preemptive fair share cluster scheduler. We have implemented BIG-C in YARN. Our evaluation with synthetic and production workloads shows that low-latency and high utilization can be both attained when scheduling heterogeneous workloads on a contended cluster.
منابع مشابه
A mechanism achieving low latency for wireless datacenter applications
Recently, several wireless/optical datacenter architectures are designed to overcome the drawbacks of wired datacenter topologies, such as expensive highend switches, high cabling complexity, congestion caused by a few hot nodes. Compared with wired switches, current commodity wireless switches usually suffer lower throughput as well as higher packet loss ratio and latency. However, todays data...
متن کاملAnalysis of Cloud Network Management Using Resource Allocation and Task Scheduling Services
Network failure in cloud datacenter could result from inefficient resource allocation; scheduling and logical segmentation of physical machines (network constraints). This is highly undesirable in Distributed Cloud Computing Networks (DCCNs) running mission critical services. Such failure has been identified in the University of Nigeria datacenter network situated in the south eastern part of N...
متن کاملAn Optimization via Simulation approach for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problems
In this paper a novel modelling and solving method has been developed to address the so-called resource constrained project scheduling problem (RCPSP) where project tasks have multiple modes and also the preemption of activities are allowed. To solve this NP-hard problem, a new general optimization via simulation (OvS) approach has been developed which is the main contribution of the current re...
متن کاملFirmament: Fast, Centralized Cluster Scheduling at Scale
Centralized datacenter schedulers can make high-quality placement decisions when scheduling tasks in a cluster. Today, however, high-quality placements come at the cost of high latency at scale, which degrades response time for interactive tasks and reduces cluster utilization. This paper describes Firmament, a centralized scheduler that scales to over ten thousand machines at subsecond placeme...
متن کاملA Performance Survey of Lightweight Virtualization Techniques
The increasing prevalence of the microservice paradigm creates a new demand for low-overhead virtualization techniques. Complementing containerization, unikernels are emerging as alternative approaches. With both techniques undergoing rapid improvements, the current landscape of lightweight virtualization approaches presents a confusing scenery, complicating the task of choosing a suited techno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017